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Abstract— Checking Fixture (CF) design is an important 

element in the stamping process of automotive parts and plays an 

integral role in linking Computer Aided Design (CAD) and 

Computer Aided Manufacturing (CAM). In order to enhance CF 

design quality and efficiency, this paper proposes a portable 

quality-confirmation inspection device for automotive part. The 

concept of the computer-aided CF design includes a new volume 

bounding box generation approach for a gantry system 

framework.  Embedded in the system, is a multi objective 

optimization algorithm which is used for locator layout design 

and a multi-surface extension and transition method for checking 

the surface quality. The sensors attached to the system will 

capture the images of a part and transfer the data into the 

developed computer system. As an implementation of the CF 

gantry system, a portable quality-confirmation inspection device 

for automotive part is developed. Reinforced Front Pillar Panel 

CF design is taken as a case study to verify it’s feasibility and 

practicability.  Based on the initial results, the device is able to 

give good readings as compared to the manual checking method.  

Finally, through improvement stages, the system is able to 

provide an alternative for automotive parts quality confirmation 

method. 

Keywords— checking fixture; automotive part; gantry system; 

computer aided design, optimization algorithm. 

I. INTRODUCTION 

This template, The checking devices are extensively used in 
manufacturing industries, especially in the stamping of 
automotive part. According to An et al. (1999), many CF 
devices in the marketplace are costly, thus only big company 
can afford to invest in this fixed device. In this project, in order 
to design an affordable checking device for all industries 
including small industries, the effort towards the applicability 
of this device must be broadened (Kang et al., 2003). Thus, the 
portable device must be designed in standard sizes that makes 
it easy to carry from one place to another.  This idea is also 
shared by Krishnakumar  and Melkote (2000), who believes 
that a portable device should be able to carry or move easily, 
especially due to its lighter and smaller in size than usual 
checking device.  

The general name for checking device is commonly 
referred as a device for measuring and checking of the linear 
and angular dimensions of parts and finished products.  In 
addition,  Bi et al. (2001) proposed that the measurement 
device is a technical equipment with standardized parameters 

or properties that is designed for the experimental 
determination of the values and physical quantities. When the 
device is used to determine the dimension, it must comply with 
all the standard limits and acceptable range, then such 
equipment is called a checking device. All instruments that can 
provide dimension and value readings may also be used for 
checking (Vallapuzha et al., 2011). 

CFs for automotive body parts have different types 
according to measuring planning and parts features. The main 
types of such CF can be described as follows: measuring 
fixtures, combined CFs, profile modelling casting CFs, and 
additional CFs. Selecting an appropriate type of CF for 
automotive body parts is a first step to design a good CF. In the 
quality control (QC) process of stamping parts, the selection of 
which type of CF takes into consideration the features and 
parameters of the part that need to be measured. Therefore, the 
characteristics of the stamping part are important to be 
considered in CF design. Traditionally, selection of a CF type 
relies heavily on the designer’s expertise and experience. 
Performance evaluation of a CF type is also very difficult due 
to the highly nonlinear relationship of the design parameters. 
Consequently, it is not immediately apparent if a CF type is 
optimal or near optimal for a given part. 

Due to the rapid development of the automotive parts, 
traditional design methods cannot satisfy the demands of these 
shapes complexities due to the designers’ availability. As a 
result, computer aided fixture design (CAFD) offers an 
effective solution to overcome these issues.  Most current 
commercialized CF design tools are traditionally geometric-
based, in which the experience of designers should be 
integrated (Wang et al., 2010). Many researchers have 
introduced knowledge based technologies into this field such as 
Darvishi and Gill (1990); they illustrated a rule-based method 
for an optimum solution for a fixture design problem. Then, 
Hou and Trappey (2001) developed a computer-aided fixture 
design system based on comprehensive fixture databases and  
rule-based knowledge. Also, Li et al. (2006) developed an 
intelligent jig and  a fixture design system which applies 
artificial intelligence (AI) technology. Considering the 
difficulty in obtaining knowledge, a case-based reasoning 
(CBR) method is now extensively used in CAFD as mentioned 
by Liu et al. (2002). They established a case-based agile fixture 
design system which includes case matching of the fixture 
planning, conflict arbitration and agile fixture case 
modification. In case adoption, the most difficult in technique 
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in CBR, there are three methods involved; judging and 
modifying by users, rule-based variation, and case combination  
(Chen et al., 2008).  

The first method is intuitive and feasible, such as the 
system of Vukelic et al. (2009), which selects all required 
fixture elements within particular functional groups by experts. 
The second one is closely related to the knowledge of fixture 
design, so a knowledge-based variation mechanism should be 
created. For example, Chen et al. (2008) proposed a hybrid 
method which retrieves the similar cases by CBR and adopts 
them by a rule-based intelligent variation approach. The third 
one can be interpreted as re-using an element and component 
levels. Similarly, Wang and Rong (2008) presented a multi-
level CBR method for welding fixture design by grading 
myriads of fixture related resources. However, different from 
general jigs and other fixtures, CFs are always small-mass 
manufactured, hence, it is difficult to acquire the knowledge or 
to re-use past cases.  Therefore, the main objective of this 
research is to develop a methodology to automate the checking 
fixture design for automotive parts. Four key methods in the 
implementation are highlighted in this paper. And, a case study 
is illustrated to show the feasibility and practicability of the 
system. 

II. TYPES AND STRUCTURES OF CF 

The CF is designed as a dedicated equipment for a 
particular automotive part. Normally, CFs for automotive parts 
are divided into six CF families as shown in Figure 1: light CF, 
door CF, interior part CF, exterior part CF, glass CF and master 
model CF. Although the various CFs have different structures, 
generally, they have similar structures and functions within the 
same CF family. 

 
Fig. 1. Various types of CFs (Shenmo, 2011) 

Practically, there are three important functions of a CF; 

clamping, checking and locating. CFs are generally composed 

of four components; locators, clamps or frameworks, checking 

components or sensors and the workbench or base plate on 

which other components are placed. Figure 2 shows an RF 

Fender CF, which belongs to a type of exterior part CF. The 

position and orientation of the checking part will determine the 

workbench.  

 
Fig. 2. CF for RF Car Fender part (Jiang et al., 2010) 

To position the checking part in static equilibrium, locators 
are used and thus removing all degrees of freedom. Clamps or 
frameworks used to support the structure of the device and 
holding the checking part firmly against the locators. The 
checking components or sensors are primary in all kinds of the 
functional components and used to check the part qualitatively 
or quantitatively and scan the stamping part and transfer the 
data into the computer system. 

III. PORTABLE CF DESIGN 

The architecture of the system can be divided into two 

parts; the main module and the system interfaces. The  former  

supports  the CF  structure  design  and  the  later  interacts  

with  the  related  upstream  and  down-stream system. The 

key design process consists of two phases: gantry system 

design and three functional component design, i.e. locating, 

clamping and checking. Gantry system is the framework that 

supports the structure of checking device. The design of 

gantry system is important because it acts as a workspace for 

the operation of checking device. In addition, a flexible 

mounting is developed to re-use and assemble the related 

standard parts and structures automatically. The system 

interfaces involve integration with Product Data 

Management/Enterprise Resource Planning, drawing and Bill 

Of Material output for manufacturing and quality analysis 

inspection. Figure 3 shows the flow chart of the design 

implementation. 

A. Project Initialization 

The first module is to initialize a new project or load an 

existing one. New project started by specifying the working 

directory and the measuring unit. After importing the 3D 

model of the part CAD data and specifying the CF type, the 

checking fixture design project will be initialized by activating 

the corresponding design flow. 
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Fig. 3. Flow chart of the system (Jiang et al., 2013) 

B. Setup Planning 

Setup planning involves the identification of setup 

features, where an individual setup defines the features used in 

the following phases without altering the position or 

orientation manually.  The key outputs from the setup-

planning phase are the identification of each required setup, 

such as location surfaces and checked surfaces definition as 

shown in Figure 4. 

Fig. 4. Locating and checked surfaces 

The gantry system idea was illustrated based on a gantry 

system used in 3D-scanner. In this research, the  CF design 

needs to be portable so that it easy to carry or transfer to 

various locations.  Based on this idea, four CF designs were 

proposed in order to meet the CF function’s criteria. All the 

four designs were designed using SolidWork2013 software. 

The drawings were based on part by part assembly process.  

Some minor adjustments were done in order for the parts to be 

fitted.  Figure 5 shows the design of the gantry system. 

 
Fig. 5. Gantry system design 

C. Overall Space Design 

In this phase, parts to be checked in the CF will be loaded 
and assembled as a sub-assembly. Based on the overall 
dimension of minimal volume of the bounding box of the 
checking part; a suitable gantry system design will be selected 
by using minimal volume bounding box generation algorithm 
for a multi-bodies 3D model.  Subsequently,  the  system  
draws  the  scale  lines  on  its  top  surface  for  the location  
and fabrication. 

A bounding box is used to establish a suitable overall 

design space of a CF. There are many bounding box types and  

algorithms, for instance, oriented bounding box  (OBB) 

(Gottschalk et al. (1996); Eberly (2002)), axis aligned 

bounding box (AABB) (Mazzetti and Ciminiera  (1994); 

Yamada and Yamaguchi  (1996)),  minimum-volume bounding  

box  (MVBB) (Gill  and  Sariel  (2001); Chan  and  Tan  

(2004)). 

Fig. 6. MVBB and AABB of a cylinder (Jiang et al., 2013) 

However, most  of  algorithms are  only applicable to 

convex hulls (Preparata and Hong, 1977) or facet models 

(Chan and Tan (2004); Huebner et al., (2008)). Moreover, 
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current commercial CAD software, such as NX, only generates 

AABB which is generally much larger than MVBB, as shown 

in Figure 6. Chan and Tan (2001) described a method for 

determining the minimum oriented  bounding  box  of  an  

arbitrary solid.  But  this  method  is  only  suitable  for  a  

single  body.  Considering  a multi-bodies CAD model for 

checking part models, a minimal volume bounding box 

(MVBB) generation algorithm is presented in this section. 

 As shown in Figure 7, V is defined as the volume of the 

AABB of a given solid and A, B, C are the edge lengths of the 

bounding box. AB, BC and CD are the rectangle areas of the 

three mutually perpendicular planes. From the following 

derivation, we can find that the areas of three mutually 

perpendicular rectangles of a given box are minimized if and 

only if the volume of the box is minimized. 

V = ABC 

Vmin = (ABC) min 

V
2

min = (ABC) 
2
min 

[(AB) (BC) (CA)] min= (AB) min (BC) min (CA) min 

 

 
Fig. 7. Schematic of an AABB in WCS (Jiang et al., 2013) 

Figure 8 shows the flow chart of the algorithm. Firstly, 

designer inputs the model of a checked part and set e and d, 

which influences the precision and efficiency of the algorithm. 

Vg is the global minimal volume of AABB of the checking 

part. Va is the minimal volume when an axis rotation step is 

finished. For multi-bodies, the whole bounding box volume V 

can be obtained by six extreme values of corners’ coordinate 

of multi-bodies’ AABBs, i.e. V = (Xmax - Xmin) * (Ymax - Ymin) 

* (Zmax - Zmin). Vr is used to record the temporary minimal 

volume, and CSmin stores the coordinate system where the 

minimum volume Vr occurs. The algorithm outputs SCmin, 

Xmin, Xmax, Ymin, Ymax, Zmin, Zmax, which are used to create the 

MVBB in CAD software. 

Fig. 8. Flow chart of the terminal volume bounding box generation algorithm 
(Jiang et al., 2013) 

D. Fixture Planning 

By using the locator layout multi-objective continuous 

searching algorithm; an appropriate location and layout can be 

found to satisfy the requirements of a CF, such as robustness, 

stability and detachability. After determination of locating 

surfaces, associated top surfaces and side surfaces should be 

determined to keep the sub-assembly maintain the stability. 

On a checking part, the points contacting directly with locators 

of the fixture are called locating points. The robustness is 

reflected in the impact on the manufacturing errors of locators. 

Asada (1985) proposed a geometric perturbation analysis 

method based on the form closure theory, which used a 

Jacobean matrix to formulate the relationship between fixture 

and work piece displacements. Subsequently, Wang and 

Nagarkar (1999) presented an accuracy optimization against 

the location errors based on the method. Location  stability  

was  defined  as  the  ability  to  keep  contacting  with  an  

object  without  slipping  because of  unexpected disturbing 

forces  (Nakamura et al., 1989). 

Figure 9 shows the proposed multi-objective locator layout 

continuous searching algorithm, which combines the multi-

objective optimization and multiple attribute decision making 

methods. Firstly, a designer inputs a checking part in CAD 

software and sets three face sets where locators will be 

located. The algorithm generates a random individual to 

initialize the NSGA-II solver. With the established multiple 
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objective problem model in the NSGA-II method generates 

the feasible solutions space in a multi-objective optimization 

environment. The Pareto-optimal solutions will be ranked 

according to the TOPSIS/Entropy method and select the 

alternatives by using the maximum overall ranking value as 

the best solution, such as the final locator layout. At last, the 

positions and directions of locators are shown in the CAD 

software to guide the designer to import standard locator parts. 

 
Fig. 9. Flow chart of the locator layout multi-objective continuous searching 

algorithm (Jiang et al., 2013) 

E. Checking Components Design (CFD) 

Checking components such as analogue blocks and 

checking rails are the most complicated parts in CFD for 

checking whether the shape and precise size of stamping part 

is under the controlled specification.  For instance, an 

automotive bumper is checked by measuring the gap between 

its fringes and the top surfaces of the analogue blocks. 

Checking rails are responsible for checking the Class A 

surfaces by detecting the slot between the checked surface and 

the top surfaces of the checking parts.  

To match to the surface contour of the checking part 

usually needs lots of complicated surface extension operations 

which is one of the most complex tasks in CF design,. Shetty 

and White (1991) described a method for extending rational 

B-spline curves and surfaces using knot insertion and the 

reflection of control points. Furthermore, Pottmann (1995) 

presented an explicit representation of all rational surfaces 

with a continuous set of rational offsets. Yu and Lei (1997) 

introduced an approach to generate extensions of NURBS 

curves and surfaces satisfying tangent plane and curvature 

continuities.  For a given surface with a piecewise smooth 

boundary, a new method to extend the surface across its 

boundary is suggested by Kim et al. (2005). The extended 

surface is C
2
-continuous along the original boundary, and 

some extra conditions can be imposed on the new boundary. 

F. Fixture Configuration System 

For this research, the developed CF uses one photoelectric 

sensor and one distance sensor to shoot and scan the 

automotive body part which make the checking process 

become easier and faster. The Arduino Mega 2569 R3 is used 

as a controller or driver to run the stepper motor and acts as 

the system memory which enabled the stepper motor moves 

when input is applied to the system. The data are analyzed 

using computer software to ensure whether it satisfies the 

actual CAD data. If the data does not align with the standard 

result, thus the adjustment of the distance of the sensor must 

be done until it satisfies the actual CAD data.   

Fig. 10. Portable CF system flow 

To ensure this process performs efficiently, all 

components that we used must be set-up properly such as 

computer connection with Adruino and Proteus software, 

power supply  of the equipments, and portable CF gantry 

system is in good condition as shown in Figure 10. In addition, 

the gantry system must be placed on the levelled ground 

surface to ensure smooth data transmission to the system.  

In part design, designers usually tend to re-use a large 

number of standard parts and commonly use typical structures 

which have the same function and similar geometry structure 

for assemblies, parts and features. The advantages of using 

this strategy are, firstly, these items is far more cost effective 

in general. Secondly, re-usable components shorten product 

design and manufacturing cycles effectively and improve 

maintenance of the products.  
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In this section, flexible intelligent part library system 

(FIPLS) is developed to support checking fixture design more 

intelligently and efficiently. For the realization of the system 

flexibility, three methods are proposed. The first method is an 

extensible part data model to record part information which 

may vary with parameters and part functions.  The second 

method is the parameter selected dynamical UI for displaying 

different parameter types.  A third method is a four-layer 

system architecture for adapting to varied Condi- tions and 

requirements. 

G. Design Verification 

Verification focuses on ensuring that developed CF 

designs (in terms of their setup plans, layout plans, and 

physical units) satisfy the design requirements. The 

verification will executed according to the following design 

standards. All the six degrees of freedoms of the checking part 

should be limited. When the CF components are loaded, there 

should not be any interference between components and part. 

The stability of the checking part should maintained, which 

means no movement is allowed during the checking process. 

Finally, the parts, CF components should be able to move in 

and out without difficulty. 

H. Drawing and BOM Output 

After the completion of CF design, it needs to be 

reviewed and approved by the chief designer. Subsequently, 

the designer can deliver engineering drawings/bill of materials 

(BOM) to downstream production departments. BOM is the 

term used to describe the raw materials, sub-assemblies, 

intermediate assemblies, sub-components, components, parts 

and the quantities necessary to manufacture a part. The 

quantities of parts to be checked and different kinds of fixture 

components are listed in the BOM.  

I. Quality Analysis Plan Generation 

As a high-precision equipment, CF has to be inspected 

strictly before being delivered to customers. The module helps 

the designer to generate the quality analysis plan, which 

guides the operations for inspectors.   Normally two types of 

data are generated by the CF, trim line and gap analysis.  The 

data is very important for the assembly process with other 

parts and components.  The data will provide the critical areas 

which are out of tolerances that require improvement to the 

moulds and dies. The case study based on Reinforced Front 

Pillar Panel of the checking process is shown in Figure 11.  

The sample results show that six areas (Points 21, 22, 24, 29, 

30, 31 and 34) need to be improved.  The remaining areas are 

in good condition and no further action is required in theses 

areas. 

 
Fig. 11. Results of the automotive body part checking 

IV. CONCLUSION 

 This paper intended to introduce a development concept of 
a portable quality-confirmation inspection device for 
automotive body parts. In inventing a good portable CF device, 
the characteristics of the portable CF device and the design of a 
gantry system need to be considered. The design of a gantry 
system is important because it acts as a workspace for the 
operation of CF device and as the framework that support the 
structure of CF device. To achieve an efficient method, the 
integration of all the four steps of CF design, (setup planning, 
fixture planning, unit design, and verification), needs to be 
considered.  Beside that, there is also a need to control the 
techniques for the verification and optimization of CF 
performance so that reliable data is captured during the 
process. 
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