
8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia

 Late Acceptance Hill Climbing Based Strategy for

Test Redundancy Reduction and Prioritization
*Rohani Bakar

#1
, Kamal Z. Zamli

#2
, and Basem Al-Kazemi

#3

#1
Faculty of Computer Systems and Software Engineering,

Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

#2
College of Computer and Information Systems,

Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
*Corresponding Author: rohani@ump.edu.my

Abstract— Software testing relates to the process of accessing the

functionality of a program. To ensure conformance, test

engineers often generate a set of test cases to validate against the

user requirements. When dealing with large line of codes

(LOCs), there are potentially issues of redundancy as new test

cases may be added and old test cases may be deleted during the

whole testing process. To address redundancy issues, many

useful strategies (e.g. HGS, GE, and GRE) have been developed

in the literature. These strategies often put focus on getting the

most minimum test suite size but give poor emphasis on test

prioritization (i.e. ordering of tests). Here, as most testing

activities happen toward the end of software development, testers

are often forced to consider partial test suite, that is, to be in line

with the project deadline. In this manner, some impactful defects

may be missed owing to the need to accommodate deadline shift

from earlier development activities. In order to address these

issues, this paper highlights our on-going work on the

development of a novel test redundancy reduction strategy based

Late Acceptance Hill Climbing, called (LAHCS). LAHCS is the

first known strategy that adopts Late Acceptance Hill Climbing

Algorithm for test redundancy reduction and prioritization.

I. INTRODUCTION

To ensure quality and conformance, developers often rely

on testing to reveal defects. Typically, testing is guided by the

designed test suite made of a set of test cases. These test cases

are usually backward traceable to the corresponding design,

product requirements and right through the stakeholder’s

justification. Generally, test cases are dynamic entity. Owing

to the need to address defects and accommodate stakeholders’

change requests during the development process, new test

cases may be added whilst existing test cases be updated or be

removed completely. For these reasons, there is potentially

significant probability for test redundancy, that is, one

requirement is covered by more than one test case. Although

desirable in some class of systems, test redundancy often

incurs unnecessary costs.

In the literature, test redundancy issues have been

addressed by many researchers resulting into many helpful

strategies (e.g. HGS [1], GE[2], and GRE[3]) Although useful

in term of systematically sampling of the appropriate test case

for consideration, existing strategies have not sufficiently

dealt with test prioritization. As most testing activities happen

towards the end of software development, testers are often

forced to prioritize and consider partial of the test cases, that is,

to be in line with the project deadline. Addressing the

aforementioned issues, this paper describes a novel approach

of adopting Late Acceptance Hill Climbing (LAHCS) based

Strategy for test redundancy reduction and prioritization.

LAHCS serves as our research vehicle to investigate the

effectiveness of Late Acceptance Hill Climbing Algorithm for

test redundancy reduction and prioritization.

The rest of the paper is organized as follows. Section II

gives an overview of the test redundancy reduction and

prioritization problem and highlights the related work. Section

III describes our strategy within the Late Acceptance Hill

Climbing Algorithm. Section IV highlights our benchmark

against other strategies. Finally, Section V gives our

conclusion and future work.

II. OVERVIEW AND RELATED WORK

Test redundancy reduction and prioritization problem can

be viewed as a set covering problem as follows [4]:

Given: A test suite TS, a list of testing requirements r1,r2,…rn

with well-defined prioritization contribution, that must be

tested to provide the desired testing coverage of the program,

and a list of subsets of TS, T1, T2,…. Tn, one associated with

each of the ri’s such that any one of the test cases tj belonging

to Ti can be used to test the requirement ri.

Problem: Find an ordered representative set of test cases tj

according to defined priority that will satisfy all of the ri’s.

Many useful strategies have been developed to address the

aforementioned problem in the last 20 years. Perhaps, the

pioneer work on test redundancy reduction is based on that of

Chavatal[4]. He introduces a novel strategy based on the

greedy heuristics. Initially, the Chavatal’s strategy greedily

picks a test case ti that covers the most requirements. Then,

all the requirements that are covered by ti are marked. The

http://mucet2014.utem.edu.my/conference-venue-and-fee

8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia

whole cycle is repeated until all requirements are marked.

Although helpful, Chavatal’s strategy appears not optimal and

does not deal with prioritization.

Complementing Chavatal’s work, Harrold et al develops a

similar strategy, called HGS [1]. Unlike Chavatal’s strategy,

HGS greedily ranks the cardinality of each requirement with

the corresponding test case (from low to high) as the main

basis for reduction. A requirement A has lower cardinality

than a requirement B if A is covered by fewer test cases than B.

Briefly, HGS works as follows. Initially, all covered

requirements are considered unmarked. For each requirement

that is exercised by one test case (i.e. cardinality of 1), HGS

adds the test case into the minimized test suite and marks the

covered requirements accordingly. Next, HGS considers the

unmarked requirements in increasing order of cardinality of

the set of test cases exercising each requirement. Then, HGS

chooses the test case that would cover the greatest number of

unmarked requirements associated with the current cardinality

of interest. When there is a tie amongst cardinality of multiple

test cases, HGS breaks the tie in favour of the test case that

would mark the greatest number of unmarked requirements

with the case sets of successively higher cardinalities. If the

highest cardinality is reached, and the tie is not resolved, HGS

arbitrarily selects one amongst those tied test case. Then, HGS

marks the requirements covered by the selected test case. The

whole iteration is repeated until all the requirements are

completely marked. The main strength of HGS is the fact that

it creates a subtle (and stable) prioritization of test cases

during its selection process (i.e. based on cardinality). Here,

hard to cover requirement with low cardinality are considered

first and followed by other requirements in order of increasing

cardinality. The main limitation of this approach is the fact

that, in real testing endeavour, prioritization is not solely a

function of cardinality. In fact, prioritization can also be a

function of likelihood of faults as well as their impacts.

Lau and Chen introduce another variant greedy strategy,

called GE [2]. In GE, the concept of concept of essential test

case is introduced for the greedy selection of test cases. Here,

essential test cases, tessential, represent those test cases that

when removed, some test requirements can never be satisfied.

In a nut shell, GE works as follows. Firstly, GE selects the

essential test cases tessential that cover the most uncovered

requirements. Secondly, GE removes all the requirements

covered by the chosen essential test cases tessential . The process

continues for all other essential test cases until completion. If

there are any uncovered requirements, the GE iterative

process will continue to greedily select test cases ti that covers

the most uncovered requirements much like Chavatal’s

approach [4]. Then, all the requirements covered by ti are

removed. The process is repeated until all requirements are

covered. Implementation wise, GE is straightforward to

implement as compared to HGS. Furthermore, as GE

considers tessential before greedily selecting candidate test case,

the test suite size offered by GE is at least the same of better

than that of Chavatal. The same argument cannot be

applicable when comparing HGS and GE. On the negative

note, GE does not address prioritization issue.

As enhancement of GE, Chen and Lau later introduce the

GRE strategy[3]. In addition to the concept of essential test

cases, GRE also exploits the idea of redundant test case. In

this case, if a test case satisfies only a subset of test-case

requirements satisfied by another test case, then that particular

test case is redundant. GRE starts by first removing redundant

test cases from the test suite. In the process, GRE reduces the

test suite and may make some test cases essential. Then, GRE

applies the same algorithm as GE in order to choose the test

cases that cover all the requirements. GRE inherit many

advantages of GE. In fact, in the absence of redundant test

case, GRE behaves much like GE. Interestingly, due to NP

completeness of the test redundancy reduction problem, the

performance of GE can still be better than GRE or even HGS

in terms of test reduction. Similar to GE, GRE does not

address the prioritization issue.

Shengwei et al adopts a strategy similar to GE [5]. Unlike

GE, they exploits weighted set covering (for requirements) in

order to eliminate test redundancy and prioritize the test suite

according to cost order. The general performance of the

algorithm appear the same to that of GE. On the negative note,

although important, prioritization need not be considered

merely on cost but on how effective of the tests being

prioritized. As highlighted earlier, prioritization can also be a

function of likelihood of faults as well as their impacts.

Galeebathullah and Indumathi develop a strategy that

combines the set theory and greedy heuristics [6]. Initially,

the strategy finds the intersection of each requirement with

other requirements. If exist any intersection exist, the test

cases are greedily combined and added to the final test suite.

The process is repeated until all requirements are covered by

the test case. In the work, prioritization issues are not reported.

Additionally, no benchmarking result against other existing

strategies is published.

Apart from the greedy heuristic approach, a number of

researchers (e.g. Tallam and Gupta [7] and Ng et al [8]) have

started to adopt the Formal Concept Analysis (FCA).

Basically, FCA is a technique for classifying objects based

upon the overlap among their attributes. For reduction, test

cases are considered as objects and requirements as attributes.

Relationship between objects and attributes corresponds to the

coverage information of test case. Using concept analysis,

maximum grouping of objects and attributes can be deduced

(termed context) in a table. Here, facilitated by graphical

concept lattice and based on the object and attribute reduction

rules, objects (i.e. test cases) can be systematically reduced.

Although helpful, FCA suffers from the problem of scale –

when the formal objects and their attributes grew, it is almost

impossible to construct and manipulate the concept lattice

graphically. Hence, the applications of FCA for large scale

test reduction (and prioritization) can be problematic and

difficult.

In light of some of the problems highlighted earlier, this

paper proposes the use of Artificial Intelligence Algorithm for

test redundancy and prioritization problem. Specifically, this

paper adopts a new variant of Hill Climbing Algorithm,

termed the Late Acceptance Hill Climbing Algorithm [9-11].

http://mucet2014.utem.edu.my/conference-venue-and-fee

8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia

The main feature of Late Acceptance Hill Climbing Algorithm

is the fact that it provides significant improvements over its

predecessor in terms of performance (and still maintains the

Hill Climbing simplicity). Unlike the original Hill Climbing,

Late Acceptance Hill Climbing algorithm allows worsening

moves. In this manner, the iterative search in Late Acceptance

Hill Climbing can be prolonged to avoid the local minima

problem inherent to the original Hill Climbing algorithm.

Another useful feature of the Late Acceptance Hill Climbing

algorithm is that it has a single parameter for manipulation,

hence, not vulnerable to inadequate parameterization and

insufficient tuning [9].

III. LATE ACCEPTANCE HILL CLIMBING ALGORITHM FOR TEST

REDUNDANCY REDUCTION AND PRIORITIZATION

In a nut shell, Late Acceptance Hill Climbing (LAHC)

adopts an iterative neighbourhood search process similar to its

predecessor. Nonetheless, unlike its predecessor which

compares the candidate solution with the current one for

acceptance (i.e. when the cost function is not worse), LAHC

delays this comparison with a solution, which was “current”

several steps before [11]. Here, each current solution still

takes on the role of an acceptance benchmark, but it will be

used at later steps. The net effect is that LAHC also considers

poor solution as the basis for the next solution – an

improvement of the general Hill Climbing algorithm as far as

avoiding local minima/maxima problem.

The main component of our strategy LAHCS that

constitutes the LAHC algorithm can be summarised in Figure

1.
Produce an initial solution s

Calculate initial cost function C(s)

for all k ϵ {0...L-1} do Ĉk ← C(s)

Assign the initial number of iteration I ← 0;

do until a chosen stopping condition:

 Construct a candidate solution s*

 Calculate its cost function C(s*)

 v ← I mod L

 if C(s*)≤ Ĉv

 then accept candidate (s ← s*)

 Insert cost value into the list Ĉv ← C(s)

 Increment the number of iteration I ← I+1

end do

Sort (s)

Fig. 1 LAHCS Strategy

In order to solve the test redundancy problem with

prioritisation, the following objective function has been

considered.

min g = truncate f(x1,x2,….xn) (1)

where: x1, x2, … xn are different combinations of the

solution sequence.

We need to find a truncated sequence of (x1,x2,….xn) that will

give the optimal (minimal) value for the objective function g(x)

based on the order of the given weighted priority. Here, if

each of the variable (x1,x2,….xn) can be chosen, this will yield

n! = n*(n-1)*(n-2)…*(1) number of permutation sequences.

Considering all exhaustive sequences, the searching process

can take hours, days, or even weeks depending on the size of

the problem.

A set of m random sequence is generated from (x1,x2,….xn)

from (n1,n2,….nn) number of ways. The generated solution

would be:

 (x
k
1,x

k
2,….x

k
n) where k = 1,2….m and m≤ n (2)

The fitness generated from (x
k
1,x

k
2,….x

k
n) is then substituted

in g(x) to get the minimum cost function. Then, the most

minimum solution is then sorted according to the weighted

priority.

f(x
k
1) ≤ f(x

k
2) … ≤ f(x

k
m) (3)

In order to adopt LAHC as the basis algorithm for test

redundancy reduction and prioritization, there is a need to

choose the appropriate stopping condition as well the history

length (L) that controls the memory of the previous cost

functions. Here, the longer the history length, the longer the

search and usually the better the results.

Theoretically, we argue that the stopping criteria should

always be at least the same number of defined test case but

must not be more than the factorial of the test suite size for

reduction (i.e. n≤ stopping criteria ≤ n!). If the most minimum

stopping criteria is less than test suite size, we cannot be sure

that we have considered all the test cases in the test suite at

least once for reduction. In similar manner, if the maximum

stopping criteria is greater than the factorial of the test suite

size, we might as well use exhaustive search.

The question now is that what is the best value for stopping

criteria? Based on the aforementioned conditions

consideration, we have decided to adopt the stopping criteria =

n x L (where n = test suite size and L=the number of defined

requirements) when (n! > n x L). In the case when (n! < n x L),

then the best stopping criteria would be at n!

As for the history length (L), we argue that the value should

be at least equal to the number of defined requirements. In this

manner, we can be sure that priority ordering of requirement

prioritization can still be possible should there be no reduction

of test suite size. It should be noted that the aforementioned

decisions on the stopping criteria and history length still

adhere to the required condition, n≤ stopping criteria ≤ n!

IV. BENCHMARKING EXPERIMENTS

To benchmark the performance of LAHCS against related

work (including GE, GRE, and HGS), we have adopted the

existing comparative case studies which are reported by Chen

and Lau [3]. Additionally, we have also added 2 new case

studies with sufficiently large test size and requirements. The

detailed configurations are shown in Table I, Table II, Table

III and Table IV respectively.

http://mucet2014.utem.edu.my/conference-venue-and-fee

8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia

For the case studies 1 till 3, no priority is explicitly defined

for GE, GRE, and HGS. For LAHCS, the priority is defined

in order of requirements, that is, the lower order requirement

has always higher priority than the subsequent requirement.

As for the stopping criteria and history length, we use the sets

of values according to our defined conditions given earlier.

For Case Study 1, the value for stopping criteria = 19x7=133

and L = 19. For Case Study 2, the value for stopping criteria =

19x9=171 and L = 19. For Case Study 3, the value for

stopping criteria = 19x12=228 and L = 19. For Case Study 4

and 5, the value for stopping criteria = 24x31=744 and L = 31.

For both case studies, we compare LAHCS against our own

implementation of GE derived from Chen and Lau [2]. Here,

unlike earlier case studies where requirement priorities are in

increasing order, different weighted requirements priorities

are defined for LAHCS (i.e. the same priority for both case

study 4 and 5 respectively).

TABLE I
BENCHMARK CASE STUDY 1

Reqi Tn

req1 {t1,t2,t3,t4,t5,t6,t7}

req2 {t1,t2,t3,t4,t5,t6,t7}

req3 {t1,t2,t3,t4,t5,t6,t7}

req4 {t1,t2,t3,t4,t5,t6,t7}

req5 {t1,t2,t5,t7}

req6 {t2,t3,t4,t6}

req7 {t1,t7}

req8 {t2,t5}

req9 {t1,t7}

req10 {t1,t2,t5,t7}

req11 {t2,t3}

req12 {t3,t4,t6}

req13 {t2,t3}

req14 {t2,t3}

req15 {t3,t4,t7}

req16 {t4,t6}

req17 {t3,t4}

req18 {t3,t4}

req19 {t4,t6}

TABLE II
BENCHMARK CASE STUDY 2

Reqi Tn

req1 {t1,t2,t3,t4,t8,t9}

req2 {t1,t2,t3,t4,t8,t9}

req3 {t1,t2,t3,t4,t8,t9}

req4 {t1,t2,t3,t4,t8,t9}

req5 {t1,t2,t9}

req6 {t2,t3,t4,t8,t9}

req7 {t1}

req8 {t2,t9}

req9 {t1}

req10 {t1,t2,t9}

req11 {t2,t3,t8}

req12 {t3,t4,t8,t9}

req13 {t2,t3,t8}

req14 {t2,t3,t8}

req15 {t3,t4,t9}

req16 {t4,t8}

req17 {t3,t4,t9}

req18 {t3,t4,t9}

req19 {t4,t8}

Concerning collection of results, as LAHCS gives non-

deterministic outputs, we repeat all our runs for all 5 case

studies 20 times and choose the best results. The Table V

depicts the results for the first three case studies whilst Table

VI highlights the last two case studies involving the

comparison between LAHCS against GE. Here, cells with the

best results are shaded accordingly.

TABLE III

BENCHMARK CASE STUDY 3

Reqi Tn

req1 {t1,t3,t4,t5,t6,t8 ,t10,t11,t12}

req2 {t1,t3,t4,t5,t6,t8 ,t10,t11,t12}

req3 {t1,t3,t4,t5,t6,t8 ,t10,t11,t12}

req4 {t1,t3,t4,t5,t6,t8 ,t10,t11,t12}

req5 {t1,t5,t10,t11,t12}

req6 {t3,t4,t6,t8,t10,t12}

req7 {t1,t10,t12}

req8 {t5,t11}

req9 {t1,t10,t12}

req10 {t1,t5,t10,t11,t12}

req11 {t3,t8,t10}

req12 {t3,t4,t6,t8,t12}

req13 {t3,t8,t10}

req14 {t3,t8,t10}

req15 {t3,t4,t12}

req16 {t4,t6,t8}

req17 {t3,t4,t12}

req18 {t3,t4,t12}

req19 {t4,t6,t8}

TABLE IV

BENCHMARK CASE STUDY 4 AND 5

Priority Reqi Tn for Case

Study 4

Tn for Case Study 5

0 req1 {t0,t3,t7,t18,t29} {t0,t3,t7,t18,t19,t29}

0 req2 {t3,t16,t22} {t1,t2,t3,t6,t12,t16,t22,t24}

1 req3 {t0,t2,t25,t27} {t0,t2,t25,t27}

2 req4 {t11,t30} {t11,t30}

50 req5 {t1,t4,t8,t14,t25} {t1,t4,t8,t14,t25}

100 req6 {t9,t14,t19,t24 } {t9,t14,t19,t24 }

2 req7 {t5,t10,t21} {t5,t10,t21}

5 req8 {t4,t20} {t4,t20}

7 req9 {t7,t17,t24,t26} {t7,t17,t24}

8 req10 {t6,t15,t29} {t15,t29}

90 req11 {t10,t15,t23} {t10,t15,t23}

80 req12 {t1,t6} {t1,t6}

45 req13 {t4} {t6}

67 req14 {t2,t8,t13,t16,t23} {t2,t8,t13,t16,t23}

55 req15 {t28} {t20,t28}

30 req16 {t22,t28} {t0,t18,t22}

6 req17 {t17,t29} {t17,t29}

7 req18 {t5,t20} {t5,t20}

9 req19 {t9,t25} {t9,t25}

22 req20 {t12} {t10,t12}

12 req21 {t9,t28,t30} {t9,t28,t30}

46 req22 {t3,t24} {t3,t24}

76 req23 {t0,t30} {t0,t5,t30}

19 req24 {t5,t8,t11,t26,t27} {t5,t8,t11,t13,t26,t27}

V. DISCUSSION

http://mucet2014.utem.edu.my/conference-venue-and-fee

8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia

Referring to the results in Table V and VI, a number of

observations can be elaborated further. The first observation

relates to the adoption of Hill Climbing as the main basis for

LAHCS. While Hill Climbing algorithm has always been

criticized for its proneness to get trap into local

minima/maxima, the development of LAHCS has proven that

Late Acceptance feature within Hill Climbing significantly

improves its performance owing to the balance selection

between intensification (i.e. how intensive is the local search

for the current solution is) and diversification (i.e. how diverse

is the current solution). Here, all solutions whether good or

inferior solution are also considered for accepting new

neighbourhood solution – unlike Simulated Annealing which

adopts probabilistic criteria based on Boltzmann energy

function [12].

From all the case studies, LAHCS produces sufficiently

competitive results in terms of percentage of reduction (see all

the shaded cells) although in different order owing to its

weighted prioritization order. With the exception of Case

Study 4, LAHCS is able to match the best performing

strategies (as in Case Study 1 and 2) and even outperforms its

competitors (as in Case Studies 3 and 5 respectively).

Specifically, for Case Study 3 and 5, LAHCS is also able to

produce diversified solutions not found by other strategies.

Also, for Case Study 5, the percentage of reduction for

LAHCS outperforms that of GE but, in return, GE

outperforms LAHCS for Case Study 4 suggesting that there is

no single one size fit all strategy for test redundancy reduction.

Another observation relates to prioritization. The question

is how prioritization can be effectively captured in order to

order the suite accordingly. In general, any requirement

prioritization can be defined in term of Likert scale. In this

case, requirement priority can come directly from the

stakeholder’s (i.e. through specification documents) or from

pragmatic experiences of the engineers on the likely hood of

failure of each requirement and its impact (i.e. through

(normalized) priority = likelihood x impact) [13]. In many

cases, software testing activities get squeezed towards the end

resulting from (unplanned) extension of other software

development activities. Owing to the need to accommodate

market demands and constraints, test engineers are often

required to prioritize only critical test cases that have the

highest impact for testing consideration.

Finally, test reduction strategy serves two sides of the same

coin. On one side of the coin, the strategy involved must be

able to generate the most optimal and minimum number of

test cases in order to reduce testing costs. On the other side of

the coin, the strategy must also not sacrifice the bug-detection

capabilities using lesser number of test cases. When dealing

with any testing strategy, test engineers may be poised with

crossroad decisions, that is, to minimize as much as possible

or to keep some if not all test cases. In some cases, it is

important to test all highly critical requirements multiple times

(i.e. voluntary redundancies) with more than one test case, that

is, to ensure strict adherence to specification. In such a case,

test engineers are free to include such test cases as required in

the final test suite list (i.e. seeding). In similar manner, test

engineers are also free to forbid a set of test cases if such a

need arises (i.e. constraints). To make matters worse, there a

no hard rules as all decisions depend on circumstances as well

as the creativity and judgment of test engineers based on the

testing job at hand as well as the testing in context.

VI. CONCLUSIONS

Summing up, this paper has elaborated a new strategy,

called LAHCS, based on Late Acceptance Hill Climbing

Algorithm. Our experience with LAHCS has been promising.

As the scope for future work, we are looking into improving

LAHCS to address reduction with multi-objective

consideration along with the support voluntary redundancies,

constraints and seeding.

ACKNOWLEDGMENT

TABLE V

BENCHMARKING RESULTS FOR CASE STUDIES 1, 2, AND 3

Strategy Case Study 1 Case Study 2 Case Study 3

GRE {t2,t4,t1(t7)}

Reduction = 62.5%

{t1,t3,t2(t9), t4(t8)}

Reduction = 33%

{t5(t11),t3,t10(t12),t4(t8)}

Reduction = 50%

GE {t3,t1(t7),t4(t6),t2(t5)}
Reduction = 50%

{t1,t3,t2(t9),t4(t8)}
Reduction = 33%

{t12,t8,t5(t11)}
Reduction = 66%

HGS {t3,t1(t7),t4(t6),t2(t5)}

Reduction = 50%

{t1,t4,t2} or {t1,t8,t9}

Reduction = 50%

{t5 (t11),t3,t1(t10,t12),t4(t6,t8)}

Reduction = 50%

LAHCS {t1(t7),t2,t4}
Reduction = 62.5%

{t1,t2,t4} or {t1,t8,t9} or
{t1,t9,t8}

Reduction = 50%

{t5(t11),t8,t12} or {(t5(t11),t10,t4}
Reduction = 66%

TABLE VI
BENCHMARKING RESULTS FOR CASE STUDIES 4 AND 5

Strategy Case Study 4 Case Study 5

GE {t4,t28,t12,t5,t3,t2,t6,t9,t17,t10,t11}

Reduction = 64%

{t6,t0,t5,t9,t4,t10,t17,t2,t3,t11,t15,t20}

Reduction = 61%

LAHCS {t7,t17,t12,t3,t25,t6,t30,t28,t15,t4,t5,t24,t23}
Reduction = 58%

{t7,t29,t11,t3,t16,t20,t0,t10,t9,t6,t8} or
{t29,t27,t18,t28,t20,t30,t10,t9,t6,t8,t24}

Reduction = 64%

http://mucet2014.utem.edu.my/conference-venue-and-fee

8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia

This research work involves collaborative efforts between

Universiti Malaysia Pahang and Umm Al-Qura University.

The work is funded by grant number 11-INF1674-10 from the

Long-Term National Plan for Science, Technology and

Innovation (LT-NPSTI), the King Abdul-Aziz City for

Science and Technology (KACST), Kingdom of Saudi Arabia.

We thank the Innovation Office, UMP and the Science and

Technology Unit at Umm Al-Qura University for their

continued logistics support.

REFERENCES

[1] M. J. Harrold, N. Gupta, and M. L. Soffa, "A Methodology for

Controlling the Size of a Test Suite," ACM Transactions on
Software Engineering Methodology, vol. 2, pp. 270-285, 1993.

[2] T. Y. Chen and M. F. Lau, "Heuristics towards the Optimization of

the Size of a Test Suite," in 3rd International Conference of
Software Quality Management, Seville, 1995, pp. 415-424.

[3] T. Y. Chen and M. F. Lau, "A New Heuristic for Test Suite

Reduction," Information and Software Technology, vol. 40, pp.
347-354, 1998.

[4] V. Chvatal, "A Greedy Heuristic for Set Covering Problem,"

Mathematics of Operations Research, vol. 4, pp. 233-235, 1979.
[5] X. Shengwei, M. Huaikou, and G. Honghao, "Test Suite Reduction

Using Weighted Set Covering Techniques," in 13th ACIS
International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel & Distributed Computing,
Kyoto, 2012, pp. 307-312.

[6] B. Galeebathullah and C. P. Indumathi, "A Novel Approach for

Controlling a Size of a Test Suite with Simple Technique,"
International Journal of Computer Science and Engineering, vol.

2, pp. 614-618, 2010.

[7] S. Tallam and N.Gupta, "A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization," presented at the 6th ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, Lisbon, Portugal, 2005.
[8] P. Ng, R. Y. K. Fung, and R. W. M. Kong, "Incremental Model-

Based Test Suite Reduction with Formal Concept Analysis,"

Journal of Information Processing Systems, vol. 6, pp. 197-208,
2010.

[9] E. K. Burke and Y. Bykov, "The Late Acceptance Hill-Climbing

Heuristic," Technical Report CSM-192, Computing Science and
Mathematics, University of Stirling 2012.

[10] E. K. Burke and Y. Bykov, "A Late Acceptance Strategy in Hill-

Climbing for Exam Timetabling Problems," in Proceedings of the
7th International Conference on the Practice and Theory of

Automated Timetabling (PATAT 08), Montreal, Canada, 2008.

[11] Y. Bykov. (2014, May 7). Late Acceptance Hill Climbing
Algorithm. Available: http://www.yuribykov.com/LAHC/

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by
Simulated Annealing," Science, vol. 220, pp. 671-680, 1983.

[13] R. Black, Managing the Testing Process: Practical Tools and

Techniques for Managing Hardware and Software Testing: Wiley,
1999.

http://mucet2014.utem.edu.my/conference-venue-and-fee
http://www.yuribykov.com/LAHC/

