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Abstract—K-harmonic means (KHM), has been introduced as 

one of the vital solutions to the classical K-means, which 

alleviates the sensitive dependence on the initial clusters 

conditions for the latter. However, it does retain the same 

deficiency as K-means: execution of KHM has a propensity to 

converge to local optima easily. In response to circumventing this 

problem, a new variant of KHM based on a recent nature 

inspired firefly search approach – specifically, the Firefly K-

harmonic means (FAKHM) algorithm – is resorted to. 

Assessment analysis on several artificial and real life datasets 

demonstrates the superiority of the proposed FAKHM algorithm.      

Keywords—clustering; firefly algorithm; K-harmonic means; 

K-means; unsupervised learning 

I.  INTRODUCTION  

Attempting to gain insight from a large scale of dataset in a 
succinct and human-comprehendible manner can be posed as 
data mining problem, where data clustering is one of the facets 
of this interesting field which has roots in variety of domains; 
including bioinformatics, pattern recognition and artificial 
intelligence [1, 2]. Clustering aims to discover and describe 
the natural groupings of observations being located in the 
input space. Observations are partitioned into several clusters, 
depending to a predefined similarity criterion, in which those 
observations belong to the same cluster, will have higher 
similarity than the observations in other clusters. Generally 
speaking, the goal of a clustering is to assign a set N of n 
observations in d input space to a set K of k points, denoted as 
cluster centers (centroids), based on optimizing a performance 
criterion. A typical used performance criterion is the total 
within-cluster variance [3].       

The fascinating features of simplicity, easy interpretation 
and computationally easy-to-use of the K-means (KM) 
algorithm, has vulgarized its widespread implementation in 
data clustering [4]. Nonetheless, this cluster-seeking approach 
was reported to be dependent substantially on the initial 
designation of centroids and trapped in local optima easily [5]. 
In this regard, efforts to resolve this limitation fruit in an 
improved variant of KM, specifically, the K-harmonic means 
(KHM) algorithm [6]. KHM remedies the sensitive 
dependence of the initial clusters representation as in KM, 
which attributed to the fact that KHM minimizes the objective 
function based on the weighted harmonic average from all 

observations in the input space to all centroids [7]. Although 
such significant improvement based on KHM is certainly 
noteworthy, it is still exposed to the problem of converging to 
local optima easily [4]. As such, a wide range of attempts are 
directed to solve this concern, especially by integrating the 
metaheuristic approaches [3-5, 7-10].  

Simulated annealing was proposed by Güngör and Ünler 
as a means to solve local optima constraint in KHM [3]. Apart 
from that, Güngör and Ünler have extended their work by 
merging the Tabu search algorithm which possesses the 
neighborhood search capability with KHM [8]. Both of the 
resulted approaches with metaheuristic algorithms were shown 
to be just as effective or even outperformed the KM and KHM 
algorithms. Alguwaizani et al. enhanced the local search of 
KHM by embedding a variable neighborhood search algorithm 
[9]. Comparison with the results obtained by Güngör and 
Ünler [3, 8] indicated the superiority of their proposed 
method. A more recent hybrid KHM with gravitational search 
algorithm (GSA) approach was developed by Yin et al. [4]. By 
borrowing the strength from GSA, in addition to overcoming 
the local optima limitation in KHM, the hybrid GSAKHM 
showed relatively high speed of convergence than the GSA as 
well. Particle swarm optimization (PSO) was integrated by 
Yang et al. in KHM in order to escape from local minima [5]. 
The efficiency of the proposed PSOKHM was corroborated 
through empirical approaches, with simulated as well as real-
world datasets. Jiang et al. used the ant clustering algorithm 
(ACA) to solve the local optimal problem in KHM [7]. The 
proposed ACAKHM algorithm gave encouraging results in 
terms of clustering effectiveness, as compared with the ACA 
and KHM. Another bio-inspired swarm computing – cat 
swarm optimization (CSO) algorithm, was coupled with KHM 
by Liu and Shen [10]. Improvement in clustering performance 
was observed, when combination of CSO and KHM was 
adopted. The newly developed cuckoo search was combined 
with KHM by Song et al. [11] .      

A recent swarm intelligence-based technique, specifically, 
the firefly algorithm (FA), which investigates and exploits the 
foraging behavior of fireflies based on their flashing 
characteristic, was constructed by Yang to solve the 
multiobjective optimization problem [12]. In his preliminary 
studies, the beneficial potential of FA in finding the global 
optima for various classical benchmark functions was 
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validated, and it was superior to both PSO and genetic 
algorithm [12, 13]. For clustering purposes, it has been 
presented that in most cases, the global search ability of FA 
surpassed the other techniques; including artificial bee colony, 
PSO, Bayes net, multilayer perceptrons, radial basis function 
neural networks, and Naïve Bayes Tree [14]. On the other 
hand, the implementation of FA in various domains shows 
promising results [15-17]. 

In this present study, the applicability of FA with global 
search ability for solving the local optima problem in KHM is 
explored. A hybrid clustering algorithm, namely, the firefly K-
harmonic means (FAKHM) algorithm, which takes merits 
from both FA and KHM into account, is proposed. The 
validity and superiority of the FAKHM are assessed in 
clustering several simulated and real life datasets. The 
remainder of this paper is organized as follows. An 
introduction of KHM is given in Section 2, followed by a brief 
discussion on FA in Section 3. Section 4 presents the proposed 
FAKHM algorithm in detail. In Section 5, the experimental 
simulations of the proposed FAKHM, as compared with the 
FA and KHM algorithms are provided, and finally, 
conclusions are drawn in Section 6.    

II. K-HARMONIC MEANS CLUSTERING 

On account of its simplicity and computationally efficient, 
KM is one of the early invented data clustering methods, 
which has been studied for decades. By applying the KM, a set 
of n observations xj, j = 1,…,n are partitioned into k groups Ci, 
i = 1,…,k, where the observations are assigned to the cluster 
the center of which is the nearest. In other words, the cluster-
seeking of KM is based on minimization of the sum of squares 
of the distance between each observation, xj, to its nearest 
cluster center, ci. The progressive computation of KM begins 
with random initialization a set of k cluster centers. However, 
if the initial cluster centers are created in a densely packed 
manner, a centroid might have difficulty moving out from the 
locally dense area, which eventually affects the clustering 
solutions drastically [3, 5]. In place of allocating the 
observation to the cluster whose center has the shortest 
distance to the observation, the KHM assigns the observations 
to the clusters by minimizing the weighted harmonic means of 
the distance from each observation to all cluster centers. As 
such, if multiple centroids are seeded within the same dense 
area, the KHM will shift one or more centroids to the region of 
observations with no close centroids reside in [8].  

Before presenting the KHM algorithm in details, the 
nomenclature for the formulation of KHM is defined as 
follows:  

X = {x1, … , xn}: A set of n observations to be clustered. 

C = {c1, … , ck}: A set of k cluster centers. 

KHM(X,C): The objective function of the KHM algorithm 
to be minimized. 

m(ci|xj): The membership function which defines the 
degree of belongingness of each observation xj to the cluster 
center ci. 

w(xj): The weight function which defines the weighting 
influence of observation xj in calculating the new position for 
cluster center ci in the next iteration. 

Hence, presenting a set of observations xj, KHM clustering 
algorithm determines the cluster centers ci iteratively using the 
following steps: 

1. Initialize the cluster centers ci, i = 1,…, k, by selecting k 
observations randomly from all the available observations. 

2. Determine the objective function, according to: 
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 where parameter p is associated with distance calculation 
and typically p is chosen as equal to or greater than 2.  

3. Calculate the membership function for each observation xj 
with respect to each cluster center ci, according to: 
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where ( | ) [0,1]i jm c x  . This allows an inherent built-in 

 fuzziness in KHM. 

4. Calculate the weight function for each observation xj, 
according to: 
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5. Update the new position for each cluster center ci 
according to the membership and weight functions from all 
observations obtained in Step 3 and 4 by using: 
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6. If the improvement of the objective function over previous 
iteration falls below a certain threshold or the iterations 
reach a predefined maximum value, then stop. Otherwise, 
go to Step 2.                      

7. Assign the observation xj to the k-th cluster with the 
highest value of m(ci|xj). 

It is worth mentioning that the weighting influence for 
each observation is updated dynamically based on a harmonic 
means. As observed from Equation (3), due to the reciprocal 
of the summation of the reciprocals of the distance between 
observation xj and cluster center ci, the observation which is 
far away from any cluster center will possess large weight. 
Meanwhile, the observation that is near to the cluster centers 
will be assigned with a small weight value. This is essentially 
important as by putting a larger weight on the observations 
that are not near to any of the cluster center, this action will 
attract those cluster centers away from the region with high 
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local density of multiple cluster centers and thus, KHM is 
insensitive to the initialization of cluster centers than KM [8].  

III. FIREFLY ALGORITHM 

Fireflies, also recognized as glow worms, emit short and 
rhythmic flashes. By flashing the light off and on, through a 
process known as bioluminescence, the glow can be used as a 
decoy to lure its prey, to attract mates, and also to ward off its 
predators. FA, a nature-inspired metaheuristic optimization 
technique which finds the global optima of objective function 
based on this foraging behavior, was formulated by Yang [12]. 
In essence, the proposed FA is idealized with respect to the 
following assumptions: (i) All fireflies are gender-blindness. It 
means that one firefly can mate with other fireflies, regardless 
of their sex; (ii) Attractiveness in the eyes of the other is 
proportional to their brightness, in such a way that the firefly 
will be attracted and move toward its adjacent firefly which 
flashes brighter than the rest. If no such member from the 
swarm exists, it will move randomly; and (iii) The brightness 
of a firefly is considered as equivalent to the value of the 
objective function for a maximization/minimization problem 
[18]. In the implementation of FA, there are two important 
issues to be concerned with. 

i. Determination of the light intensity: Biologically, each 
firefly lights up proportionally to the amount of light-
emitting compound, called luciferin, found in its abdomen. 
In FA, in order to quantify this value relatively, the 
produced light intensity is associated with the encoded 
objective value [12]. Hence, if xi is the solution for a firefly 
i and f(xi) represents its fitness value, the brightness I for 
the firefly i is denoted as: 

                                 ( ),i iI f x                                  (5) 

where 1 i n   and n is number of fireflies. 

ii. Movement of the firefly: As mentioned earlier, a firefly i at 
location xi with lower light intensity will move toward an 
adjacent firefly j at location xj, if the latter glows brighter 
than it. In FA, this movement is characterized as [12]: 

2

0( 1) ( ) exp( )( ) ( 1/ 2)i i j ix t x t r x x rand          (6) 

where r is the Euclidean distance between fireflies i and j. 

 The second term in Equation (6) characterizes the 
movement of firefly. As the light is absorbed in the 
medium, the light absorption coefficient γ is imposed (γ = 
1 usually).  β0 represents the initial attractiveness at r = 0, 
and it is chosen as 1 typically. The last term randomizes 
the movement direction of firefly i, with [0,1]  denotes 

the randomization parameter, and rand generates random 
number uniformly in the interval of [0,1]  .  

IV. THE HYBRID FIREFLY K-HARMONIC MEANS CLUSTERING 

ALGORITHM 

KHM is favored, in the sense that fewer function 
evaluations are needed for convergence and thus, its short 
runtime is an added benefit in addition to its insensitiveness to 
the initialization of the cluster centers. Nonetheless, the issue 

of getting stuck easily in infeasible local optima has remained 
unresolved for KHM. On the other hand, the strong global 
searching ability of FA has been investigated and corroborated 
by Yang [18]; moreover, its computation time may be 
comparable to that of KHM, if the number of maximum 
iteration are not assigned to a large value.  

In this present study, a hybrid clustering algorithm, 
specifically, the FAKHM algorithm is formed by combining 
the merits of both KHM and FA. By borrowing the strength of 
FA, this hybrid approach can overcome the local optima 
problem and reach the global optima in limited iterations. 
Meanwhile, a more appropriate position of the initial cluster 
centers can be determined from FA for KHM, from which it 
generates a better input to FA in return, so as to accelerate its 
convergence to the global optima.  

The algorithm for the implementation of FAKHM is given 
as follows [12, 14]:  

Step 1: Set the initial parameters; including the maximum 
iteration count Itercount, number of fireflies n, light 
absorption coefficient γ, and initial attractiveness 
β0. 

Step 2: Generate the initial population of n fireflies within 
d-dimensional search place randomly xi, i = 1,…,n 
to carry out their forage activity. 

Step 3: Set iterative countGen_1 = 0. 

Step 4: Set iterative countGen_2 = 0 and countGen_3 = 0. 

Step 5: FA Approach 

 Step 5.1: Determine light intensity Ii at xi which 
is directly proportional to f(xi). 

 Step 5.2: Compare the light intensity for each 
firefly. If the light intensity for firefly 
i is greater than firefly j, move firefly 
i to firefly j in d-dimension, by using 
Equation (6).  

 Step 5.3: Evaluate the new solutions and update 
the light intensity Ii at new position xi. 

 Step 5.4: Update countGen_2 = countGen_2 + 
1.  

If countGen_2 < 8, go to Step 5.2. 
Otherwise, go to Step 6. 

Step 6: KHM Approach 

For each observation i, 

 Step 6.1: Take the result from FA as the initial 
cluster centers for KHM algorithm. 

 Step 6.2: Calculate the objective function, 
membership and weight function, by 
using Equations (1) - (3). 

 Step 6.3: Update the cluster center ci according 
to Equation (4). 

http://mucet2014.utem.edu.my/conference-venue-and-fee


8th MUCET 2014, Date: 10-11 November 2014, Melaka, Malaysia 

 

 

 Step 6.4: Update countGen_3 = countGen_3 + 
1.  

If countGen_3 < 4, go to Step 6.2. 
Otherwise, go to Step 7. 

Step 7: Update countGen_1 = countGen_1 + 1.  

If countGen_1 < Itercount, go to Step 4. Otherwise, 
assign the observation to the cluster i with the 
largest m(ci|xj) 

It is of interest to note that for each loop of FAKHM, four 
iterations of KHM are applied to the fireflies obtained after 
every eight cycles, in order to improve its fitness value. These 
values are chosen based on the previous studies [4, 5]. The 
value of p in Equations (1)-(3) is chosen empirically as 2.     

V. EXPERIMENTAL SIMULATIONS 

 To validate the feasibility and validity of the proposed 
hybrid FAKHM algorithm as compared to the FA and KHM 
algorithms, the experimental studies of these algorithms in two 
artificial datasets are presented. In addition to the simulated 
datasets, the publicly available real life datasets (breast cancer, 
iris and wine datasets) from the UCI machine learning 
repository (http://archive.ics.uci.edu/ml/datasets.html) are 
taken into consideration as well. 

A. Datasets 

The description of the datasets used in this present study is 
given as follows: 

i. Artset1: As illustrated in Figure 1, Artset1 is a two-
dimensional artificial dataset with three non-
overlapping clusters, where there are 100 
observations in each cluster. The observations are 
independently derived from bivariate normal 
distribution with means  (-2,-2), (2,2), (6,6) and 

covariance matrix 
0.4 0.04

0.04 0.4

 
  
 

  . 

ii. Artset2: As portrayed in Figure 2, Artset2 is a three-
dimensional simulated dataset with a total of 300 
observations. The observations are generated from 
the uniform distribution on the set of (10,25), (25,40), 
and (40,55) for each cluster, respectively, with 100 
observations in each cluster.  

 

 

 

 

 

 

 

 

 

Fig. 1. Data distribution of dataset Artset1, which consists of three clusters 

and 100 observations in each. 

 

 

TABLE I.  CHARACTERISTICS OF THE DATASETS 

Dataset 

No. of 

Classes 

No. of 

Atrributes 

Size of dataset (no. of instances 

in each class is given in 
parentheses) 

Artset1 3 2 300 (100,100,100) 

Artset2 3 3 300 (100,100,100) 

Breast 

Cancer 
2 9 683 (239, 444) 

Iris 3 4 150 (50, 50, 50) 

Wine 3 13 178 (59, 71, 48) 

 

iii. Breast Cancer: The Wisconsin breast cancer dataset 
has 683 instances with 9 attributes corresponding to 
the clump thickness, uniformity of cell size, 
uniformity of cell shape, marginal adhesion, single 
epithelial cell size, bare nuclei, bland chromatin, 
normal nucleoli and mitoses, and involves a binary 
classification problem. Partitioning aims to predict 
whether the given instance is benign (239 instances) 
or malignant (444 instances), which are linearly 
separable. 

iv. Iris: There are three classes exist in the Iris dataset, 
where each of them represents a type of Iris plant: 
Iris Setosa, Iris Versicolour and Iris Virginica. Each 
class contains 50 instances with 4 attributes refer to 
the  sepal length, sepal width, petal length and petal 
width.  

v. Wine: The chemical analysis results for wines from 
three different cultivars are summarized in this 
dataset. The 13 attributes are referring to the amount 
of different constituents (Alcohol, Malic acid, ash, 
alkalinity of ash, Magnesium, total phenols, 
flavanoids, non-flavanoid phenols, Proanthocyanins, 
colour intensity, hue, OD280/OD315 of diluted 
wines, Proline) found in the 178 instances (59, 71 and 
48 instances for each cultivar, respectively). 

The characteristics of the datasets under investigation are 
summarized in Table 1.  
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Fig. 2. Data distribution of dataset Artset2, which consists of three clusters 

and 100 observations in each. 

 

 

TABLE II.  SIMULATION RESULTS OF KHM, FA AND FAKHM IN 

CLUSTERING THE ARTIFICIAL AND REAL LIFE DATASETS 

Dataset Performance 

Measure 

Clustering Algorithm 

  FA KHM FAKHM 

Artset1 SumKHM 598.492 

(0.000) 

600.265 

(0.000) 
598.492 

(0.000) 

 F-Measure 1.000 

(0.000) 

1.000 

(0.000) 

1.000 

(0.000) 

 Runtime 0.213 

(0.029) 

8.187 

(0.155) 

1.827 

(0.028) 

Artset2 SumKHM 4.826E

+4 

(0.000) 

3.611E+5 

(1.756E+3) 
4.826E+4 

(0.000) 

 F-Measure 1.000 

(0.000) 

0.684 

(0.005) 
1.000 

(0.000) 

 Runtime 0.455 

(0.035) 

0.638 
(0.018) 

4.004 
(0.310) 

Breast 

Cancer 

SumKHM 2.983E

+4 
(0.000) 

1.188E+5 

(8.483E+3) 
4.654E+3 

(656.422) 

 F-Measure 0.951 

(0.000) 

0.902 

(0.015) 
0.962 

(0.001) 

 Runtime 0.675 

(0.051) 

6.225 

(0.304) 

19.645 

(0.878) 

Iris SumKHM 181.728 

(0.000) 

1375.842 

(1.798) 

185.667 

(0.000) 

 F-Measure 0.892 

(0.000) 

0.864 

(0.031) 

0.933 

(0.000) 

 Runtime 0.262 

(0.052) 

0.346 
(0.010) 

4.607 
(0.030) 

Wine SumKHM 5.388E

+6 
(0.000) 

1.658E+7 

(6.831E+6) 
1.085E+5 

(1.061E+5) 

 F-Measure 0.686 

(0.000) 

0.613 

(0.045) 
0.718 

(0.004) 

 Runtime 0.870 

(0.107) 

1.010 
(0.197) 

5.610 
(1.880) 

a. The results shown in this table are the means and standard deviation (in parenthesis) for 10 
independent runs. Bold values are the best performances achieved by the algorithms. 

 

B. Performance Evaluation 

For quantitative evaluation purpose, two performance 
criteria are utilized in order to quantify the superiority of a 
clustering solution, which are: 

i. SumKHM: It represents the summation from all observations 
for the harmonic average of the Euclidean distance 
between an observation and all the cluster centers. The 
value for SumKHM can be calculated by using Equation (1) 
wherein, a better clustering solution will be indicated by a 
lower SumKHM score.  

ii. F-measure: The F-measure is defined as [4, 5, 7]: 

                max { ( , )},i
ji

n
F F i j

n
                      (7) 

where  
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2

( 1) ( , ) ( , )
( , ) .

( , ) ( , )
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F i j
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



                   (8) 

p(i,j) and r(i,j) are precision and recall for each class i 
(from  reference solution) and cluster j (from clustering 
solution)  which are given by: 

                                   ( , ) ,
ij

j

n
p i j

n
                                (9) 

and                                ( , ) ,
ij

i

n
r i j

n
                              (10) 

where nj, ni and nij is the number of observations assigned 
 to cluster j, number of observations in class i, and number 
 of observations of class i within cluster j. The value of b is 
 chosen as 1 so that an equal weighting for both precision 
 and recall are obtained. A better clustering solution will be 
 indicated by a higher F-measure, where the score 1 means 
 that the perfect clustering is attained.   

For each dataset, the experimental simulation of KHM, FA 
and FAKHM algorithms is computed for 10 times. The 
obtained results are averaged, where the means and standard 
deviation for each algorithm in addition to its total runtime are 
summarized in Table 2.   

C. Results and Discussion 

As evident in Table 2, the KHM, FA and FAKHM 
algorithms provide appropriate partitioning results for dataset 
Artset1, which is clearly indicated by the attained F-measure = 
1 for all cases. This is not surprising since Artset1 is a low-
dimensional simple dataset which possesses non-overlapping 
data distribution, as illustrated in Figure 1. In fact, these three 
algorithms are able to converge to the optimal cluster centers 
successfully, where the solutions of {(-2.0463, -1.9499), 
(2.1003, 2.0136), (6.0481, 6.0313)}, {(-2.1119, -1.9886), 
(2.0716, 2.0096), (6.0509, 6.0189)} and {(-2.0443, -1.9482), 
(2.1057, 2.0204), (6.0470, 6.0304)} are generated by KHM,  

FA and FAKHM, respectively, and hence, their obtained 
average SumKHM values are almost identical. It thus suggested 
that the three algorithms may perform equally when the 
dataset under investigation is well-separated; however, the 
KHM allows the fastest computation.  For the Artset2, both of 
the KHM and FAKHM algorithms are comparable in terms of 
SumKHM and F-measure, but the former gives faster 
convergence to the global optima.  

For the real life datasets, Table 2 shows that the utilization 
of FA with KHM could lead to a better partitioning result, as 
indicated by the highest F-measure obtained by the FAKHM 
for the concerned datasets. At the same time, the average 
values of SumKHM for FAKHM are practically perfectly or 
even superior to those achieved by KHM, while the 
performance of algorithm is presumable preferable for 
clustering a high-dimensional complex dataset, especially 
when the underlying interaction between the attributes is 
indistinct.  
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Performance assessment of the proposed FAKHM 

algorithm and other methods reported in literature applied to 
the same datasets are made in terms of F-measure, which is 
presented in Table 3. It can be deduced from this table that the 
FAKHM offers more promising solutions, as it surpassed the 
other metaheuristic algorithms, specifically, the ACA, 
ACAKHM, GSAKHM, PSO, and PSOKHM, by achieving the 
highest F-measure for all the datasets, from which the 
superiority and feasibility of the FAKHM can be validated.  

TABLE III.  PERFORMANCE COMPARISON OF FAKHM ALGORITHM WITH 

OTHER RESULTS IN LITERATURE 

Dataset Method F-Measure Reference 

Artset1 ACA 0.35(0.2) [7] 

 ACAKHM 1.000(0.000) [7] 

 GSAKHM 1.000(0.000) [4] 

 PSO 1.000(0.000) [5] 

 PSOKHM 1.000(0.000) [5] 

 FAKHM 1.000(0.000)  

Artset2 ACA 0.39(0.37) [7] 

 ACAKHM 1.000(0.000) [7] 

 GSAKHM 1.000(0.000) [4] 

 PSO 0.681(0.093) [5] 

 PSOKHM 1.000(0.000) [5] 

 FAKHM 1.000(0.000)  

Breast 

Cancer 

GSAKHM 0.862(0.000) [4] 

 PSO 0.820(0.046) [5] 

 PSOKHM 0.835(0.003) [5] 

 FAKHM 0.962(0.001)  

Iris ACA 0.31(0.16) [7] 

 ACAKHM 0.80(0.07) [7] 

 GSAKHM 0.766(0.000) [4] 

 PSO 0.740(0.025) [5] 

 PSOKHM 0.765(0.004) [5] 

 FAKHM 0.933(0.000)  

Wine ACA 0.21(0.2) [7] 

 ACAKHM 0.53(0.02) [7] 

 GSAKHM 0.553(0.000) [4] 

 PSO 0.530(0.039) [5] 

 PSOKHM 0.553(0.000) [5] 

 FAKHM 0.718(0.004)  

a. The results shown in this table are the means and standard deviation (in parenthesis). Bold values are 
the best performances achieved by other methods in literature and the FAKHM in each dataset. 

 

VI. CONCLUSION 

In this paper, a hybrid clustering algorithm based on KHM 
and a recent developed swarm intelligence technique, 
specifically, the firefly algorithm is proposed. The validity of 
the resulted FAKHM algorithm is assessed empirically, 
through simulation on artificial and real life datasets. The 
obtained results demonstrate the beneficial potential of 
FAKHM, as it provides adequate clustering results for the 
concerned datasets which possess different structures. Its 
superiority is especially noteworthy when dealing with the 
high-dimensional complex datasets wherein, it outperforms 
the other nature inspired approaches in most cases. Although 
the proposed FAKHM alleviates the local optima problem in 
KHM, the computation of FAKHM is onerous and thus, 
increasing the search efficiency of FAKHM will be an 
interesting issue to pursue in the future work.   
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